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Abstract

The paper is aimed at the active damping of structural vibration of a simply supported beam by using a piezoelectric,
collocated sensor/actuator pair. The control concept is based on the velocity feedback. The bending-extensional dy-
namic model of the beam with glued piezoelements is proposed. The shear bonding layers both for the actuator and the
sensor are assumed visco-elastic described by the Kelvin—Voigt material. The steady-state response of the beam loaded
by a harmonic concentrated force is obtained from the solution of the boundary value problem. The boundary problem
is formulated by the governing equations for the sections with and without piezoelectric patches, boundary conditions
at the ends of the beam, continuity conditions between sections and the free stress conditions at the actuator and sensor
edges. The influence of bonding layer parameters on the dynamic response of the controlled beam is analysed. The
results in terms of frequency response of the beam transverse displacements show that the stiffness of bonding layers
affects significantly the active damping efficiency. The beam vibrations can be reduced considerably for relatively stiff
glue layers. The range of material damping parameter of the bonding layer, which causes an increase in the resonant
amplitudes, is also indicated. A growth of stiffness as well as passive damping of the bonding layer results in a slight
increase of resonance frequencies. The effect of variations in the bonding layer parameters on the shear stress distri-
bution along the sensor and actuator is also presented and discussed. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials have become popular in many engineering applications. Distributed sensors and
actuators integrated with the flexible structure have been applied successfully in the closed-loop control (cf.
Bailey and Hubbard, 1985; Alberts and Colvin, 1991; Newman, 1991; Dimitriadis et al., 1991; Lee et al.,
1991). Dynamic analysis of the system is commonly based on the static relations describing an interaction
between the perfectly bonded actuator and the substructure. A comprehensive static coupling model, which
includes an elastic bonding layer, was analysed by Crawley and de Luis (1987). The dynamic approach for a
simply supported beam with perfectly bonded actuators was presented by Pan et al. (1991). In their model
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the actuator extension with inertia forces was considered. Tylikowski (1993) formulated the dynamic
bending-extensional model including the bonding layer with the finite shearing stiffness. This approach was
applied to active damping of beams (Pietrzakowski, 1997) and stabilisation of beam parametric vibrations
(Tylikowski, 1999). The comparison of the coupling models presented by Pietrzakowski (2000) shows that
the static approximation is reasonable only for the sufficiently thin piezoelements and stiff glue layers when
the dynamic interaction and shear effects can be neglected.

In the present study the developed bending-extensional model of a visco-elastic beam with a collocated
sensor/actuator system is proposed. Taking into account a pure extension in piezoelements, the shear
bonding layers both for the actuator and the sensor are assumed as visco-elastic and described by the
Kelvin—Voigt material. The steady-state response of the beam excited by a harmonic concentrated force is
obtained from the solution of the boundary value problem. The boundary problem is formulated by the
dynamic equations for beam sections with and without piezoelectric patches, boundary conditions at the
beam ends, continuity conditions between sections and the free stress conditions at the actuator and sensor
edges. The purpose of the theoretical analysis is to show the influence of bonding layer parameters (elastic
shear modulus and retardation time) on the dynamic response of the controlled beam.

2. Formulation of the problem and analysis

The considered system is a simply supported visco-elastic beam of the length / and width b loaded by the
time-dependant force F'(¢). Piezoelectric patches of the same width as the beam are mounted to both op-
posite sides of the beam, and form the collocated sensor/actuator pair. A voltage generated by the sensor
and transformed according to the PD controller drives the actuator. For analysis the beam is divided into
four parts due to the acting force cross-section and the location of piezoelectric device (Fig. 1). The dynamic
behaviour of each part is governed by different equations. It is assumed that the massless bonding layers
between the actuator as well as the sensor and the substructure are visco-elastic, described by the Kelvin—
Voigt model.

2.1. Dynamic equations

The dynamic equations are formulated assuming bending of the beam agreeably to the Bernoulli-Euler
theory, the longitudinal pure extension (compression) of piezoelements and pure one-dimensional shear in
the bonding layers. The beam transverse displacement w and the longitudinal displacement u, of the ac-
tuator and us of the sensor describe the motion of the system, respectively.
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Fig. 1. Beam with a piezoelectric sensor/actuator pair.
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Fig. 2. Infinitesimal beam element with piezoelements and bonding layers.

The governing equations for the activated section of beam (x, < x < x3) are derived considering an in-
finitesimal element shown in Fig. 2.

The longitudinal motion of the actuator and sensor is defined with inertial forces taking into account.

Their intensities are g, = —patabe’;‘?ﬂand qs = —pt;hb S atza respectively. The governing equations can be ex-
pressed by strains &, = aaij and ¢ = 3 as follows:
d%e, %, Orf
Etige ~Phgp ~ o M
0%e, %, Ot
Ests— ———=0 2
w2 PP T @

where E,, Es, p,, ps, 1, s denote Young’s modulus, the mass density and thickness of the actuator and
sensor, respectively. The shear stresses t and t~ transmitted by the piezoelements are determined by stress—
strain relations

= ?; (1o — uy)) 3)
g
G*

T :Z—S(us—ub) (4)
g

where u, u; are the upper and lower beam surface longitudinal displacements, respectively; ¢, is the
bonding layer thickness; G!, G; are the linear functions of differential operator which for the Kelvin—Voigt
model of bonding layer material can be written in the form

; oy .
Gi:Gj<l+u§> j=a,s (5)
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where G, is Kirchhoff’s modulus; u is the retardation time (of the same value for each layer); the subscript
j = a, s refers to the actuator or sensor bonding layer, respectively.

The beam transverse motion is described by considering the dynamic coupling between the piezoele-
ments and the beam, and also by including mass of piezoelements in the equivalent inertial force of intensity
¢q (see Fig. 2). The beam governing equations are as follows:

oT 0w
o b =0 (6)
oM twb
= + 7 t"+1)=0 (7)

where 7, M are the transverse force and bending moment, respectively; p = (ppto + pata + Psts)/ts is the
equivalent mass density of activated section; #, and p, denote the thickness and mass density of beam,
respectively.
Under the assumption of equal values of the upper and lower beam surface displacements, u; = u, = uy,
the following geometrical relations can be accepted
*w 2 Ouy 2
Pw_ 20w _ 2, (8)
Ox t, Ox ty
where ¢, is the beam surface extensional strain.
The bending moment in the beam cross-section described as a relation of the beam surface strain has the
form

M

% 42
_ Ebébb " 9)
where Ej = Ey (1 + p, 2) refers to the Kelvin—Voigt model of beam material with the following parameters:
Ey — Young’s modulus, p, — retardation time.
After eliminating shear stresses t*, v, inner forces 7, M, displacements u;/, u, and w from the governing
equations (1), (2) and (7), the motion of the actuator, sensor and beam can be expressed by strains &,, &, &,
in the system of coupled equations

%, G* A%,
E a _“a _ _ a —
ala ) . (62 — &) — Pyta o 0 x€ (x,x3) (10)
e G e
EStSW_E(&S_ﬁb)_pStSW_O XE(Xz,Xg) (11)
Eif O, 1[G (D%, Ogp G (%, O’ ey,
D _ s - 2= 12
2o sl \ae )t G ae)| Trae 70 Tl (12)

The motion of other beam sections is described by the classical Bernoulli-Euler equation
Egt% 648b 628b

Fwﬁ—pbwzo x € (0,x1) Ux € (x1,%2) Ux € (x3,1) (13)

2.2. Piezoelectric sensor and actuator relations

The beam deflection develops the strain in the sensor. Due to the constitutive equation of piezoelectric
material the electric displacement is as follows:
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D3 = —d3510'5 (14)

where dj, is the piezoelectric constant of sensor material; o, = Eé, is the sensor stress.
After integrating the charge over the sensor electrode area and applying the charge/voltage relation, the
voltage produced by the sensor is equal to

v — Cs/ssbs(x)dx (15)

where bs(x) = b[H(x —x,) — H(x — x3)] denotes the sensor width distribution; H(x) is the Heaviside func-
tion; C; is the sensor constant of the form

t,
C,=ds E,—— 16
s 31 SAse33 ( )
where 45 = b(x; — x,) is the sensor electrode area; es; is the permittivity of sensor material.
Assuming that the sensor and actuator are electronically coupled with velocity feedback, the voltage
applied to the actuator is given by
av;
Vo =ky— 17
a d 6t ( )
where k; is the gain factor of control loop.
The actuator constitutive strain—voltage relation has the form
da
s =81y (18)
t,
where d§, is the piezoelectric constant of the actuator material.
The normal stresses g,, uniformly distributed in the actuator cross-section, are given by the following
stress—strain relation

g, = Ea (e, — 1) (19)

2.3. Boundary and continuity conditions

The equations of motion have to satisfy the simply supported boundary conditions at the beam ends at
x = 0 and x = /, continuity of beam deflection, slope, curvature and transverse force at the borders of the
sections at x = xj, x = x,, x = x3 and free edge condition for the ends of both the actuator and the sensor.

The external force F(¢) acting at the cross-section x = x; imposes the following form of the continuity
condition of transverse force:

6F

asb i
XT Eblﬁb

o

o
o O

(20)

The continuity of transverse force at the boundaries of activated part of the beam is found taking into
account the shear stresses t* and 7~ which are transmitted by the bonding layers. The following relations
give the above condition in terms of strain:

+—Q—G‘f‘(/sadx—/gbdx)
2 tg
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The free edge conditions at the actuator and sensor ends have to satisfy the zero normal stresses.
Therefore, it requires according to the stress—strain relation (19) that for the actuator is

a(x3,1) = ea(xy,0) =4 (23)

where the piezoelectric strain 4 is given by Eq. (18). The voltage supplying of the actuator is determined by
Eq. (15) and the feedback rule, Eq. (17). The free ends conditions for the sensor yield

E{;l‘b %
3 Ox

_|_

3

+ (22)
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&(x3,1) = &(x3,1) =0 (24)
The boundary and continuity conditions can be written as the following system of equations:

w(0,1) =w(l,t) =0 (25)

*w *w

|, el " 20

W(vat) = w(xT,t) W(x;7t) = W(x2+7 t) W(x;7t> = W(x3+’ t) (27)
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T(xy,t)=T(x\,0) T(xy,0)=Tx3,0) T(x5,t)=T(x3,1) (30)

0a(x5,1) = 0a(x5,1) =0 oy(x3,1) = 0(x3,1) =0 (31)

The transverse displacement w one can eliminate from the above equations by applying the geometrical
relation (8).

2.4. Steady-state solution

The equations of motion and the system of boundary conditions form the boundary value problem. The
solution to it gives the dynamic strain response of the beam and piezoelements. The steady-state response is
analysed. Therefore, it is assumed that the force acting on the beam is a harmonic single frequency function
of amplitude Fy, F(¢) = Fy exp(iwt). The solutions of dynamic equations (Egs. (10)—(13)) are harmonic with
the same angular velocity as the excitation

ea(x,1) &a(x)
&(x, 1) | = | &(x) | exp(iow?) (32)
en(x, 1) &p(x)

Substituting the solutions Eq. (32) into the governing equations (Egs. (10)—(13)), a system of ordinary
differential equations is obtained. The solutions in the spatial domain have the form dependent on the
section of the beam. The classical beam sections are described by

ep(x) = Cy exp(kix) + C; exp(—kix) + Cs exp(ikix) + Cq exp(—ikix) x € (0,x;) (33)



M. Pietrzakowski | International Journal of Solids and Structures 38 (2001) 7885-7897 7891
ep(x) = Cs exp(kix) + Cg exp(—kix) + C; exp(ikix) + Cs exp(—ikix) x € (x1,x2) (34)
&p(x) = Ci7 exp(kix) + Cis exp(—kix) + Cig exp(ikix) + Cyg exp(—ikix) x € (x3,1) (35)

where the wavenumber k; has the form

12 2
by = 2
Ebtb

with E, which indicates the complex Young modulus.
The activated beam section (x, < x < x3) has the following solutions for the beam surface strain and
actuator and sensor strains, respectively:

&p(x) = Z C, exp(k.x) (36)
16 C
&a(x) = Z o) exp(k,x) (37)
6
&(x) = Z il @) exp(k,x) (38)
where

Etit 1t
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J n G
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with Gj (j = a, s) which is the Fourier transformation of the function, Eq. (5), describing adhesive material
properties (complex shear modulus).

The wavenumbers £, = 9,...,16 are calculated from the algebraic equation of the form
Aghk® + Ak® + A4k + Ak2 + 49 =0 (39)
where
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The twenty unknown coefficients Cj, ..., Cy are obtained from the system of algebraic equations de-

termined by the boundary and continuity conditions (Egs. (25)-(31)) after substituting the expected so-
lutions (Eq. (32) and Egs. (33)—(38)).

Integrating stains ¢,, & and &, with respect to x and substituting into the stress—strain relations Egs. (3)
and (4) give the formulae for the shear stresses in the actuator and sensor bonding layers

2Oy (1) et e () (40)
t tg n=9 Ofa(k,”a)) kn plix X X2,X3
O () S entk ve (41)
e all @) T n X X2,

g o \ %s (k,,, G)) k, plfax 2,X3

The shear stress distribution is responsible for the mechanical coupling between the piezoelements and
the beam, and its influence on the active damping effect is significant.

3. Results

Numerical calculations are performed for the simply supported beam of length / = 380 mm, width
b =40 mm and thickness #, = 2 mm. The parameters of visco-elastic material of the beam are the fol-
lowing: the mass density p, = 7800 kgm~3, Young’s modulus Ej, = 2.16 x 10!! Pa and retardation time
W, = 1077 s which is applied to limit the resonant amplitudes. The sensor/actuator pair is located between
X, = 76 mm and x; = 114 mm with its centre placed on the fourth mode line. The thickness of the actuator
is t, = 0.5 mm and sensor ¢, = 0.4 mm. It is assumed that the actuator is made of the PZT ceramic (lead—
zirconate—titanate) while the sensor material is the PVDF flexible polymer (polyvinylidene fluoride). The
electro-mechanical properties of piezoelectric material are listed in Table 1.

The beam is loaded by the harmonic force F(¢) of amplitude equal to unity, acting at x;, = 75 mm.
According to the concept of active damping the velocity feedback with the gain factor £; = 0.05 s is as-

Table 1
Material parameters
Material parameter Actuator PZT(G-1195) Sensor PVDF
p (kg m™) 7280 4500
E (N m™) 6.3 x 10'° 2 x 10°
dy, (m/V) 1.9 x 10710 -
d3, (CIN) - 3.3x 1071

€33 (F/m) — 1.06 x 10710
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Fig. 3. Effect of variation in the actuator bonding layer stiffness.

sumed. The analysed frequency response functions are calculated at the sensor/actuator field point x = 90
mm.

To predict the influence of the bonding layer elasticity on the dynamic response of the controlled beam
the calculations are performed for the following values of shearing stiffness parameter G,/t, = 10", 5 x
10, 10", 5 x 10", 5x 10" Nm™ (j = a, s). They cover the range from relatively soft to stiff bonding
layers.

The results obtained for variations in the stiffness parameter G,/t, of the bonding layer between the
piezoceramic actuator and the beam are presented in Fig. 3 for a wide range of angular frequencies and in
Fig. 4 for the first resonance region. In Fig. 4 the dynamic characteristic referring to the uncontrolled beam
is also shown. The stiffness of the sensor bonding layer is assumed constant and equal to G,/t, = 10!
Nm™. It can be noticed that the amplitudes of the tested vibration modes increase significantly, as the
actuator bonding layer becomes soft. This increase is much more expressive at small values of the stiffness
parameter G,/t,. In addition, the modification of the bonding layer stiffness affects the stiffness of the entire
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: 3-Ga/1y =1-101
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Fig. 4. First mode active damping. Influence of the actuator bonding layer stiffness.
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Fig. 5. Effect of variation in the sensor bonding layer stiffness.
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Fig. 6. First mode active damping. Influence of the sensor bonding layer stiffness.

system. One can see that for the soft bonding layer, when a relatively weak coupling between the actuator
and the substructure exists, the resonant peaks appear at lower frequencies.

The influence of the stiffness parameter G/, of the bonding layer between the piezopolymer sensor and
the beam is shown in Figs. 5 and 6. The dynamic characteristics presented in Fig. 6 are obtained at the near-
first resonance frequencies by supposing a constant stiffness of the actuator bonding layer of the inter-
mediate value G, /7, = 10" Nm~. The comparison between Figs. 3-6 show that the effects of variations in
both the sensor and the actuator bonding layer stiffness are qualitatively similar. But the system response is
less sensitive to variations in the parameter G,/f, (see Figs. 5 and 6). In this case the beam deflections at the
considered resonance regions do not differ significantly as the sensor bonding layer stiffness alters. The
noticeable increase in amplitudes can be observed only for the extremely soft glue layer (Gy/t, = 10"
Nm™). The resonance frequencies are almost independent of the bonding layer stiffness. The reasons of
this behaviour of the system are the mechanical properties of the piezopolymer material. The elastic
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Fig. 7. Effect of material damping in the bonding layers. The first resonance region is tested.

modulus of the PVDF is above 30 times smaller compared with that for the PZT ceramic, and its mass
density is also relatively small.

Fig. 7 shows the influence of passive damping in the glue layers on the beam response for the first
resonance region. The retardation time p is assumed to have same value in both the actuator and the sensor
bonding layers. Calculations are accomplished for the intermediate shearing stiffness G, /t, = G,/t, = 10!
Nm™3. It is observed that the presence of inner damping in the bonding layers causes an increase in the
vibration amplitudes of the controlled beam. In the considered case the efficiency of active damping reaches
minimum for the retardation time u = 0.007 s. Some advantage of the glue material damping is only
noticed when extremely great values of u are applied (1 = 0.04 s). As expected, the resonance frequencies
become slightly higher with an increase in the bonding layer damping.

Figs. 8 and 9 show the distributions of shear stresses along the actuator and the sensor, respectively,
which are induced by the harmonic voltage ¥, applied to the actuator. The diagrams are obtained for
different values of the bonding layer stiffness by assuming the voltage amplitude 7, = 100 V and almost a
static loading, @ = 0.1 s~!. The shear stresses are antisymmetric with respect to the centre of the piezo-
element. The distributions of shear stresses transmitted by the actuator depend strongly on the bonding
layer stiffness, and change from an approximately linear form for the soft glue layer to the distribution
characterised by large stress values concentrated at the ends of the actuator, which refers to the stiff layer.
The stress distributions are in a good agreement with the results obtained according to the static analysis
presented by Crawley and de Luis (1987). The shear stresses acting on the sensor are almost proportional to
the distance from the sensor centre independently of the bonding layer stiffness (see Fig. 9). Only near the
sensor ends the increase in shear stresses for the stiff layer becomes significantly greater than that one
referring to the soft glue layer.

4. Conclusions

The dynamic model of beam with a collocated sensor/actuator system has been developed by including
visco-elastic bonding layers both for the sensor and the actuator. The theoretical analysis and numerical
tests are focused on the influence of glue material visco-elastic properties on the active damping of the beam
transverse motion. The results presented in terms of amplitude—frequency characteristics show that the
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Fig. 8. Shear stress distribution for the actuator at w = 0.1 s7!.
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Fig. 9. Shear stress distribution for the sensor at w = 0.1 s,

stiffness of bonding layers affects significantly the active damping efficiency, and they prove the advantage
of using relatively stiff bonding layers in the piezoelectric control system. But, it should be emphasised that
the sufficiently stiff glue layer increases the hazard of shear stress concentration at the piezoelement ends.
Therefore, a damage of coupling between the piezoelement and the basic structure in the form of edge
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delamination can be expected. The effects of passive damping (modelled as the Kelvin—Voigt material) are
positive, in the aspect of vibration reduction, only for extremely large retardation times. The sensors made
of the PVDF polymer do not change the local stiffness of the structure so much, and also decrease con-
siderably the sensitivity of the entire system to visco-elastic parameters of the bonding layers. The lower
electro-mechanical constant of piezopolymer material compared with the PZT ceramic can be compensated
by an increased gain factor of the feedback loop.
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